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Abstract  

Background: The process of creating a cohort or cohort sub-study may induce misleading exposure-

health effect associations through collider stratification bias (i.e. selection bias) or bias due to 

conditioning on an intermediate. Studies of environmental risk factors may be at particular risk.  

Objectives: To demonstrate how such biases of the exposure-health effect association arise and how 

one may mitigate them. 

Methods: We used directed acyclic graphs and the example of bone lead and mortality (all-cause, 

cardiovascular, and ischemic heart disease) among 835 white men in the Normative Aging Study 

(NAS) to illustrate potential bias related to recruitment into the NAS and the bone lead sub-study. We 

then applied methods (adjustment, restriction, and inverse probability of attrition weighting) to 

mitigate these biases in analyses using Cox proportional hazards models to estimate adjusted hazard 

ratios (HR) and 95% confidence intervals (CI).   

Results: Analyses adjusted for age at bone lead measurement, smoking, and education among all men 

found HRs (95% CI) for the highest vs. lowest tertile of patella lead of 1.34 (0.90-2.00), 1.46 (0.86-

2.48), and 2.01 (0.86-4.68) for all-cause, cardiovascular, and ischemic heart disease mortality, 

respectively. After applying methods to mitigate the biases, the HR (95% CI) among the 637 men 

analyzed were 1.86 (1.12-3.09), 2.47 (1.23-4.96), and 5.20 (1.61-16.8), respectively. 

Conclusions: Careful attention to the underlying structure of the observed data is critical to identifying 

potential biases and methods to mitigate them. Understanding factors that influence initial study 

participation and study loss to follow-up is critical. Recruitment of population-based samples, and 

enrolling participants at a younger age, before the potential onset of exposure-related health effects, 

can help reduce these potential pitfalls.  
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Introduction 

While randomized controlled trials (RCTs) are often conducted in a highly selected set of participants, 

exposure in such studies is unrelated to the selection process because exposures come after the 

randomization of selected participants.  Therefore, it is reasonable to believe that this initial selection 

process does not induce biased exposure-health effect associations (i.e., associations that are different 

from the true total causal effect of the exposure on the outcome, in the absence of chance associations, 

in the source population that was sampled to obtain the study sample), although the findings of RCTs 

may lack generalizability (i.e., that the causal effect in the sampled population would not be the same 

as the causal effect in a different population).  In observational studies, the initial selection process 

may result in biased exposure-health effect associations.  Past or current exposure status may influence 

selection into the study or into sub-studies, either because exposure or correlates of the exposure are 

related to pre-specified eligibility criteria or because they influence participant availability or 

willingness to participate.  If both the exposure and the outcome or their correlates (including past 

exposure and outcome) are related to participation, a study’s exposure-health effect associations may 

not reflect the true total causal effect in the source population that was sampled to obtain the study 

sample, either because of selection bias (known as collider stratification bias in causal theory) (Hernan 

et al. 2004) or because the selection process is equivalent to conditioning on an intermediate between 

the exposure of interest and the outcome (Schisterman et al. 2009).   

The impact of collider stratification bias is well recognized in the setting of case-control studies.  By 

definition, participation is related to the outcome; if recruitment into a case-control study is related to 

the exposure of interest as well, the observed exposure-health effect association may not reflect the 

true causal effect in the sampled population (Hernan et al. 2004; Wacholder et al. 1992).  Similarly, 

exposure-health effect associations in prospective cohort studies likewise may not reflect the true 
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causal effect in the whole cohort (and by extension, the population from which the cohort was drawn) 

if both the exposure and outcome are related to loss-to-follow-up (Hernan et al. 2004).   Perhaps less 

well appreciated is how the process of cohort formation can induce a similar problem.  Structurally, 

this problem is the same as loss-to-follow-up.  If the exposure and outcome, or their correlates, 

influence a person’s initial eligibility or participation, the resulting exposure-health effect association 

may not reflect the causal effect in the source population.    

The impact of conditioning on an intermediate is also well recognized in the epidemiologic literature.  

Termed “overadjustment” by some, in simulation, the resultant bias can be substantial (Rothman et al. 

2008; Schisterman et al. 2009). However, as with collider stratification bias, it is less well recognized 

that the cohort formation process may induce this bias in specific situations. 

Many studies of environmental toxicant exposures are likely susceptible to bias of the exposure-health 

effect estimates attributable to the study or sub-study selection process – including both collider 

stratification bias and bias due to conditioning on an intermediate – for two reasons: (1) environmental 

exposures are often related to socioeconomic status (SES), which is known to predict participation (de 

Graaf et al. 2000; Howe et al. 2013; Mein et al. 2012; Weuve 2013),  and (2) exposure to an 

environmental toxicant at one time point is often reasonably correlated with exposure at other time 

points, and prior exposures (and their consequences) may be related to participation.  Another, perhaps 

simpler way to think of this relies on the fact that environmental exposures and their correlates (e.g., 

SES) are ubiquitous in space and time – the most susceptible individuals may not participate in studies 

given downstream consequences of past exposure or its correlates (potentially including the outcome 

of interest), leading to an underestimate of any adverse causal effects of exposure on a given health 

effect.     
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In this paper, we examine the issue of biased exposure-health effect associations resulting from who 

participates in a study or sub-study, and ways of reducing this bias in the analysis.   To do this, we use 

an example of the association between cumulative lead exposure (as measured by lead concentration in 

bone) and mortality (total, all cardiovascular, and ischemic heart disease) in the Normative Aging 

Study (NAS), expanding on an earlier analysis (Weisskopf et al. 2009).  NAS participants were 

originally enrolled in the 1960s and bone lead concentration was measured between 1991 and 1999 for 

a sub-study of the health effects of lead exposure.   Given the routes of lead exposure and cumulative 

nature of bone lead measures, measured bone lead concentration may include, and is almost certainly 

correlated with lead exposures prior to cohort formation.  Therefore, it is reasonable to think that (1) 

unique prior correlates of lead exposure and mortality both influence study participation at both study 

inception and recruitment into the lead sub-study, resulting in collider stratification bias in the absence 

of analytical methods to mitigate this bias, and (2) lead exposure-related health effects may influence 

study participation in both the original study and the lead sub-study, resulting in bias from conditioning 

on an intermediate of the lead exposure-mortality association.   To illustrate this, we describe how non-

participation at each point of recruitment may bias the association between lead exposure and mortality 

using causal directed acyclic graphs (DAGs).  We then use critical evaluation of the proposed causal 

structure to suggest methods by which we could mitigate this bias and apply these methods to illustrate 

the influence of such methods on study results.   

Methods  

Study Population 

The NAS is a prospective cohort study of community-dwelling men initiated in 1963 (Bell et al. 1972).  

Eligibility criteria for entry into the NAS included: having no history of treatment for hypertension; 
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systolic blood pressure ≤140 mmHg; diastolic blood pressure ≤90 mmHg; and no other chronic 

conditions, including heart disease, diabetes mellitus, and cancer.  At cohort inception, 2,280 

participants between the ages of 21 and 80 were recruited from the Greater Boston, Massachusetts area 

and since then participants have come in every 3-5 years for in-person evaluations.  Because the 

percentage of participants who are non-white (2%) or missing race (3%) is very low we consider only 

the 2,159 white NAS participants.  This research was approved by the Human Subjects Committees of 

the Boston VA Healthcare System, the Brigham and Women’s Hospital, and the Harvard School of 

Public Health.  Study participants provided informed consent at enrollment and at follow-up 

evaluations. 

Blood lead measurement 

Blood draws for blood lead concentration measurements were done at each regular NAS visit, starting 

in 1992. In all, there were 1,206 white NAS men with at least one measurement of lead in blood.  For 

the analyses we used the first blood lead measurement for each individual, which were collected from 

1992 through 2007. Blood was collected in special lead-free tubes containing EDTA and analyzed at 

ESA Laboratories (Chelmsford, Mass) by Zeeman background corrected flameless atomic absorption 

(graphite furnace) as previously described (Weisskopf et al., 2009).  

Bone Lead Measurements and Sub-Study 

Between 1991 and 1999, a subset of NAS participants agreed to have their bone lead concentration 

measured to provide an estimate of cumulative past lead exposure over years to decades (Wilker et al. 

2011) for a sub-study of the health effects of lead exposure.  Bone lead measurements were taken at 

both the patella and mid-tibial shaft with an ABIOMED K-shell X-Ray Fluorescence (KXRF) 

instrument (ABIOMED, Danvers, MA) as described previously (Weisskopf et al. 2009).  Units of lead 
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concentration are in µg lead/g bone mineral and each measurement has an accompanying uncertainty 

related to background noise in the signal extraction procedure. We followed typical practice (Hu et al. 

1996) and excluded measurements with estimated uncertainty beyond the typical range (greater than 

10 and 15 µg/g for tibia and patella, respectively) as this usually reflects excessive subject movement 

during the measurement.  In total, 835 white NAS men had valid patella lead measurements and 836 

had valid tibia lead measurements.    

Mortality Follow-up 

Most deaths of NAS participants are identified through next of kin or postal authorities. Additional 

deaths are identified via birthday cards and supplemental mailed questionnaires sent to the participants 

(when next of kin return them informing us of a death), as well as VA and Social Security 

Administration Death Master File searches.  We considered deaths through March 2007 to be 

consistent with our earlier report (Weisskopf et al. 2009).  Death certificates are obtained from the 

appropriate state health departments for deceased NAS participants and were reviewed by a board-

certified cardiologist to assign cause of death according to the International Classification of Diseases, 

Ninth Revision (ICD-9) (World Health Organization 1977).   On the basis of any cause listed on the 

death certificate (underlying or contributing) we classified deaths with ICD-9 codes 390 to 459 as due 

to cardiovascular disease, and ICD-9 codes 410 to 414 and 429.2 as due to ischemic heart disease. 

Causal Directed Acyclic Graphs (DAGs)  

Causal DAGs are a type of causal diagram that graphically represents the underlying causal relations 

between variables (both measured and unmeasured) in a given study setting.  Such diagrams are useful 

in identifying key assumptions made about the causal structure of a problem and aid in identification of 

potential bias in estimating causal effects under a variety of analytic scenarios (Glymour et al. 2005; 
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Glymour et al. 2008; Hernan and Robins 2014).   

DAGs contain variables (also called nodes) and directional arrows between the variables (Figure 1).  

Arrows between any two variables denote that one variable causes the other (e.g., A causes C and C 

causes E in Figure 1A).   Statistical associations between two variables are identified, with a few 

notable exceptions discussed below, as any connection through arrows (ignoring the direction of the 

arrows) between any two variables, including connections passing through other variables - this is 

known as a path.  A statistical association between two variables is also a causal one if the path that 

emanates from the first variable (cause) and arrives at the other variable (effect) only travels in the 

direction of the arrows (e.g. A to F in Figure 1A), assuming the DAG is correctly constructed.    Other 

paths that connect an exposure to the outcome, but include a portion that goes backwards along at least 

one arrow, indicate a statistical, but non-causal, association (e.g., D to C in Figure 1A).  One limitation 

of DAGs is that, while they identify a potential source of bias, they do little to inform whether the 

magnitude of the bias is small or large and the direction of bias is not always obvious.   

Under some conditions variables connected by arrows are not statistically associated; in DAG 

terminology these conditions block a path.  First, if there is a variable with two arrows that point into it 

(a common effect of two variables, known in DAG terminology as a collider, e.g., variable D in Figure 

1A), the path for statistical association through that collider along those two arrows is blocked. 

Consequently, barring other paths, there will not be a statistical association between the two variables 

from which the arrows come (e.g., between variables A and B in figure 1A).   

Second, conditioning on a variable blocks statistical association that would otherwise go through that 

variable. In DAG graphical representation, a box drawn around a variable (e.g., variable C or D in 

Figure 1B) represents conditioning on that variable, which can be done by restriction, stratification, or 

regression adjustment. Thus, in Figure 1B, for example, there is no association between A and F after 
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conditioning on C.  However, there is one exception to this rule: conditioning on a collider opens the 

path for statistical association through the collider along the two arrows into the collider (and so, there 

will be a statistical association between the two variables from which the arrows come, e.g. between A 

and B after conditioning on D in figure 1B).  In more formal language, conditioning on a collider 

makes marginally independent variables correlated within levels of the collider.   

Finally, conditioning on a descendant of a variable (an effect of a variable) has effects similar to 

conditioning on the variable itself. For example, if you condition on variable F in Figure 1A (a 

descendant of C), the association between A and E will be partially blocked because you have partially 

conditioned on C. The degree to which conditioning on F conditions on C depends on the strength of 

the association between C and F.  For example, adjusting for a weak effect of smoking (e.g. bad 

breath) would be insufficient to effectively condition on smoking behavior.  In a similar manner, if you 

condition on variable G in figure1A (a descendant of the collider D), you partially open the path 

between A and B through D, which creates an association between A and B.  Again the degree to 

which that path is opened by conditioning on G depends on the strength of the association between D 

and G.  

Bias of an exposure-outcome association occurs when there is any non-causal path on the DAG from 

the exposure to the outcome.  In Figure 1A, there is no causal effect of D on F, yet there is a statistical 

association through the path D←A→C→F, indicating that an estimate of the causal association 

between D and F would be biased if the D←A→C→F path is not blocked (e.g. through conditioning 

on A or C).  Similarly, in Figure 1B, there is an association between A and B (via the path A→D←B) 

in the absence of a causal effect and so we conclude our estimate of the causal effect of A on B (or 

vice-versa) will be biased from a model that conditions on D.  Such bias can result in an estimate of an 
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exposure-outcome association that is stronger or weaker than the true causal effect, and has the 

potential to mute or even reverse the direction of the association relative to the true causal effect.  

Bias can also occur when the selection process results in conditioning on an intermediate between the 

exposure and outcome of interest, because this produces an exposure-outcome estimate that does not 

reflect the causal effect of the exposure on the outcome in the source population.  For example, in 

Figure 1B, we condition on C, an intermediate of the causal effect of A on E. If this conditioning was 

done by restricting the study sample to those in the source population who had a given level of C, then 

we would not see an association between A and E despite a causal effect of A on E in the source 

population.  Note that when one analyzes an entire population, or a representative sample of a 

population (i.e. a truly random sample of the entire population), then an exposure-outcome association 

found when conditioning on an intermediate can accurately estimate any effect of the exposure that is 

not through the intermediate on which one conditions, under certain assumptions (e.g. no confounding 

of the intermediate and outcome) (Schisterman et al. 2009).   However, when conditioning on an 

intermediate is the result of selecting and analyzing only a subset of the original population (as is the 

case in our situation described below), then the exposure-outcome association may not be a valid 

estimate of either the total effect of the exposure on the outcome, or the portion of the effect operating 

through causal pathways that do not involve the intermediate variable.  

DAG representing our data 

The DAG shown in Figure 2 represents our assumptions about the structure of the causal relationships 

between lead, mortality and related variables in our data.  The subscripts refer to variables at entry into 

the NAS (0) and at the time of bone lead measurement (1).  This DAG does not show all of the 

possible variables of interest individually–for simplicity, CV0 and CV1 represent clinically detectable 

cardiovascular disease or cardiovascular risk factors at times 0 and 1, L represents measured 
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covariates, and U represents other unmeasured covariates. In addition, we combine U and L into a 

single node because the arrows into and out of the L and U variables have the same structure.  

Education is a good example of an L variable because it is known to affect study non-participation and 

loss to follow-up and is related to both health status and lead exposure.  Other SES factors could be 

potential U variables.    Study participation is denoted as S (for selection) and two types are shown, 

SNAS and SKXRF.  The former indicates participation in the NAS cohort at its inception and the latter 

refers to participation in KXRF measurements.  These two selection steps combine to determine the 

people that can actually be analyzed to examine the association between bone lead concentration and 

mortality.  Both SNAS and SKXRF have boxes around them because restricting to the subset that entered 

the NAS and the subset of those that had KXRF measurements is a form of conditioning.  The 

CV0!SNAS and CV1!SKXRF arrows are included because health status, including cardiovascular 

problems, is known to affect participation in epidemiologic studies (generally the more healthy are 

more likely to initiate and maintain participation) (Alonso et al. 2009; Mein et al. 2012).  In addition, 

observed cardiovascular health issues were part of the eligibility criteria at NAS entry (Bell et al. 

1972).  The U0&L0!SNAS, U0&L0! SKXRF, and U1&L1!SKXRF arrows are included because we are 

assuming some subset of the L (e.g. smoking, education) and U (e.g. other markers of SES, health 

status) variables affect study non-participation and loss to follow-up (generally those with lower SES, 

worse health, and smokers are less likely to initiate and maintain participation), an assumption well 

supported by the literature (de Graaf et al. 2000; Howe et al. 2013; Mein et al. 2012).  The U&L!Pb 

arrows are included because we are assuming some subset of the L and U variables (e.g. age, SES 

variables) are also causally related to lead exposure (e.g. older age and lower SES are associated with 

higher lead concentration) (Park et al. 2009).  Similarly, the U&L!CV arrows indicate the assumption 

that some subset of the L and U (e.g. age, SES variables) are causally related to development of poor 
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cardiovascular health (e.g. older age and lower SES are associated with more health problems).  Pb0 

and Pb1, represent summary measures of lead exposure at time 0 and time 1; however, note that we 

only measure Pb at time 1, so Pb0 is unobserved.  However, we consider an effect emanating from Pb0 

or Pb1 and terminating in mortality to represent a causal effect of Pb on mortality for the purposes of 

identifying potential bias in our DAG.  This is a reasonable approach given that Pb1 and Pb0 are both 

measurements of cumulative lead exposure.  Note that (1) the observed Pb1 could include Pb0 exposure 

from prior to NAS entry, as represented by the arrow from Pb0 to Pb1 in Figure 2, and (2) an 

individual’s exposure to lead is likely correlated over time (not depicted in the DAG). We wish to 

examine the total causal effect of Pb (Pb0 or Pb1) on mortality in the source population.  This total 

causal effect includes all causal paths through or independent of other variables (e.g. CV), as we 

hypothesize that lead exposure could contribute to mortality both through and independent of induction 

of cardiovascular disease.  

Possible Sources of Bias 

Standard epidemiological analyses tend to focus exclusively on bias of exposure-health effect 

estimates from confounding.  Both the L and U variables in our DAG introduce typical confounding 

bias because they are a common cause of the exposure and outcome under study: statistical association 

between, e.g., Pb0 and mortality occurs via a path that does not emanate from Pb0 

(Pb0"L0!Mortality). However, assuming our DAG is correctly specified, the DAG reveals that there 

are two other potential sources of bias that arise as a result of who participated in the NAS study and 

KXRF sub-study.  Both may result in the analysis of a sample that is less likely to be susceptible to the 

adverse health effects of lead exposure than the general population, which would lead to an 

underestimate of the observed effect estimate of lead exposure on mortality. These are collider 

stratification bias and bias from conditioning on an intermediate. 
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Collider Stratification (Selection) Bias. Collider stratification bias (i.e. selection bias) is a source of 

potential exposure-health effect estimate bias that is often not considered in analyses that are not case-

control studies.  In our study, if we ignore for the moment issues related to selection into the KXRF 

sub-study and focus on selection into the NAS, we can consider the simplified DAG of Figure 3A, 

including only a portion of the Figure 2 DAG, that illustrates this problem.  SNAS is a collider on which 

we condition through the process of cohort formation.  Therefore, statistical association between L0 

and CV0 is induced along the path CV0! 𝑆!"# "L0 and Pb0 is connected to mortality via a path that 

does not emanate from Pb0 (Pb0"L0! 𝑆!"# "CV0!Mortality).  This path is non-causal because it 

does not emanate from Pb0 (but goes backwards along the arrow from Pb0) and therefore analyses that 

ignore this may be biased. Note that L0 could be replaced with U0 in the path above.   It should be 

noted that this bias has exactly the same structure as collider stratification bias from loss-to-follow-up 

prior to selection into the KXRF sub-study, which can be seen if we only consider the follow-up period 

after entry into the NAS (Figure 3B). Conditioning on SKXRF opens the path CV1! 𝑆!"#$ "L1 (or U1) 

and thereby we can observe an association between Pb1 and mortality in the absence of a causal effect 

of Pb1 on mortality.  

Bias From Conditioning on an Intermediate. A second often ignored potential source of bias of 

exposure-health effect estimates is from conditioning on an intermediate.  While this is more 

frequently recognized in terms of variables that lie on the causal path between an exposure and 

outcome, that this can occur as a result of selection processes is more often missed. This arises from 

the fact that conditioning on a descendant of a variable is akin to conditioning on the variable itself, 

especially if the association between the variable and its descendant is strong.  Thus, in our study, if 

participation or selection into the NAS is at least partly driven by cardiovascular disease at the time of 
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enrollment, then the participant selection process effectively conditions on CV0, a causal intermediate 

between lead exposure and mortality.  This is illustrated in simplified form in Figure 4A. Conditioning 

on SNAS blocks some of the association that goes from Pb0 to mortality through CV0, because 

conditioning on SNAS partially conditions on CV0.  We know this to be true at NAS inception, as 

absence of cardiovascular disease and hypertension were eligibility requirements; thus we expect 

downward bias of the lead-mortality effect estimate from an analysis that ignores this, masking the 

total true adverse effect of lead exposure on mortality in the source population from which we sampled 

to form the NAS.  Similarly, we expect this problem to repeat at the time of selection into the KXRF 

sub-study (Figure 4B) since health status is a known predictor of study participation and loss-to-

follow-up (Alonso et al. 2009; Mein et al. 2012), although the downward bias of the lead-mortality 

effect estimate at this stage may be less than at NAS entry because there were no explicit health related 

inclusion criteria for the KXRF sub-study.  

Methods to Account for Bias 

Adjustment. Adjustment for relevant L variables assessed both at baseline and at the time of the 

KXRF sub-study—standard practice in most epidemiological studies—should be sufficient to address 

biases of the lead-mortality effect estimates from both confounding and collider stratification biases 

introduced by these L variables (assuming adequate and appropriate measurement and 

parameterization of the L variables, and that the earlier lead exposure does not causally affect the later 

L variables, in which case conditioning on them would be conditioning on an intermediate).  However, 

if there remain uncontrolled U variables as depicted in the DAG (Figure 5A), both confounding and 

collider stratification bias of the lead-mortality effect estimate will remain. (Note that adjusting for CV 

to block collider stratification bias is not possible because it induces conditioning on an intermediate of 

the effect of lead on mortality.) Adjusting for additional variables can help to remove some of the bias 
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introduced by the uncontrolled U variables by effectively converting them to controlled L variables (in 

practice, U variables may actually be measured, but just not initially considered as potential 

confounders by the investigator); for example, adjusting for other SES variables beyond education 

(Figure 5B).  Such adjustment may also help reduce bias from yet other uncontrolled (U) SES 

variables to the extent that the controlled SES variables act as proxies for other uncontrolled (possibly 

unmeasured) SES variables. 

Restriction. If we could eliminate the arrow between Pb0 and CV0 or CV0 and SNAS, the bias of the 

lead-mortality effect estimate from both collider stratification bias and conditioning on an intermediate 

at cohort recruitment would not exist.  This could be done by restricting the analysis to those who were 

young enough at entry into the NAS that cardiovascular disease-related health effects of lead exposure 

that impact participation would be relatively rare.  In such a group there are no arrows from Pb0 to CV0 

or from CV0 to SNAS because there are essentially no CV0 (Figure 5C).  Note that removing the CV0 to 

SNAS arrow also removes collider bias from conditioning on SNAS whether that bias involves an L 

variable or a U variable and so is more effective at removing this bias than simple adjustment for L 

variables.  

Inverse Probability Weighting. Restriction based on age at entry into the NAS does not eliminate 

similar collider stratification bias or bias from conditioning on an intermediate resulting from selection 

into the KXRF sub-study (Figure 5C).  We cannot restrict to a group 45 years old or younger at the 

time of KXRF because there are virtually none given the age at NAS recruitment and time from that 

until the KXRF sub-study.  Instead, here we can use inverse probability of attrition weighting (IPW; 

(Hernan et al. 2000; Weuve et al. 2012)) to alleviate the potential bias of the lead-mortality effect 

estimates from both collider stratification bias and conditioning on an intermediate resulting from 

selection into the KXRF sub-study.   
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IPW uses information available for participants with and without KXRF measurements to weight 

observations from participants with a KXRF measurement, so that the weighted sub-population is 

representative of all NAS participants who are alive at the time of the KXRF sub-study.  (Note that it is 

possible to address attrition by death with this technique as well; however, this is controversial and 

particularly problematic for the current study, where the outcome is mortality – we refer readers to the 

work of others for further consideration of what to do with attrition due to death (Andersen and 

Keiding 2012; Chaix et al. 2012; Kurland et al. 2009; Lau et al. 2009; Tchetgen Tchetgen 2014; 

Tchtetgen Tchetgen et al. 2012; Varadhan et al. 2014; Weuve et al. 2012)).  In this way the arrows into 

SKXRF are removed (because the group is weighted to be representative of the whole living NAS 

population and therefore not a selected group of the original NAS study sample), thus eliminating the 

bias induced by conditioning on a collider or conditioning on the intermediate CV1 through 

conditioning on its descendant SKXRF (Figure 5D). We could not use IPW to address the similar 

problem at NAS initiation because we have no data on those who did not participate in the NAS.  

Statistical Analysis 

We used Cox proportional hazards modeling with age as the time metameter, to estimate adjusted 

hazard ratios (HR) and 95% confidence intervals (CI) for mortality in association with lead exposure. 

Participants contributed follow-up time from the date of their first blood or bone lead measurement to 

the date of death or last contact with the NAS. Adjustment for covariates was done by including the 

covariates in the model.    We used missing indicators to account for missingness (<5% for all 

variables except for mother’s occupation—21.4% missing—which likely reflected the mother’s not 

being in the workforce).    We present DAGs for our base model (Figure 5A, Model 1) and then 

illustrating the impact of layering on additional SES adjustment (Figure 5B, Model 2), restriction 

(Figure 5C, Model 3), and IPW (Figure 5C, Model 4) to address issues of confounding, collider 



Environ Health Perspect doi: 10.1289/ehp.1408888 
Advance Publication: Not Copyedited 
 
 

 18 

stratification bias and conditioning on an intermediate.   

Adjustment. Model 1 included age at blood or bone lead measurement and its square, smoking 

(never/former/current and linear packyears), and education (less than high school, high school, 

technical school, some college, college graduate or more), represented by adding boxes around the L 

variables in Figure 5A. Model 2 also adjusted for additional markers of SES, including mother’s and 

father’s occupation (laborer, clerical, craftsman, manager, professional, other), mother’s and father’s 

education (grammar school, high school, college or more), occupation at NAS entry (categorized into 

broad job categories of the US Bureau of the Census 2000 classification of private industry employees 

(US Equal Employment Opportunity Commission), and quintiles of salary at NAS entry.  We assume 

that after this additional adjustment, we have no remaining influential uncontrolled confounders, and 

so have removed the U variables from Figure 5B. However, as in any epidemiological study one can 

never completely rule out unmeasured confounding.  

Restriction. Model 3 includes Model 2 covariate adjustment but only includes persons age 45 or less 

at NAS recruitment given that overt cardiovascular disease-related health effects of lead exposure that 

impact participation would be relatively rare at these younger ages. This eliminates all arrows into or 

from CV0 (Figure 5C). 

Inverse Probability of Attrition Weights.  We used methods that have been described in detail 

elsewhere to create inverse probability of attrition weights (IPW) for non-death drop-out after 

formation of the original NAS cohort (i.e., it will not address issues of selection into NAS) (Hernan et 

al. 2000; Kurland and Heagerty 2005; Power et al. 2013).  Briefly, we used a single logistic regression 

model, with one record per study visit from inception through April, 1999 (the last date of the bone 

lead measurements used in this study) to predict the probability of continuation in the study given that 
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they were alive. Given the large number of possible predictors among the a priori defined set of 

probable predictors (Supplemental Material, Table S1) relative to the number of persons who dropped 

out of the study, we used forward selection to inform the variables included in the final models 

(Supplemental Material, Table S2), as described in Supplemental Material, “Details of inverse 

probability weighting”.  Unstabilized weights were calculated as the inverse of the final probability for 

each KXRF participant of remaining in the cohort at the time of KXRF lead assessment.  Model 4 is 

the same as model 3, but includes this IPW weighting. In the DAG, IPW removes all arrows into SKXRF 

(Figure 5D).  The final DAG, incorporating adjustment, age restriction at NAS entry and IPW for the 

KXRF subgroup (Figure 5D) now does not have either the collider stratification bias or conditioning 

on an intermediate bias problems identified in the original DAG (Figure 2).  

Tests for linear trend across lead tertiles were computed by entering an ordinal variable corresponding 

to lead tertile as a continuous variable in the models. Statistical significance was evaluated with an 

alpha level of 0.05. All analyses were conducted using SAS, Version 9.3, except for analyses 

incorporating penalized splines for the continuous lead term, which were completed using R, Version 

3.0.1.  

Results 

At the time of bone lead measurement, the mean ± sd age of the 835 participants with bone lead data 

was 67 ± 7 years old.  Most were well educated and only 14% were current smokers (Supplemental 

Table S3).  The health characteristics of those with a bone lead measurement and those without (either 

because they chose not to have it done or they were censored prior to the time of bone lead 

measurements) approximately 10 years prior to recruitment for the lead sub-study (mean 1983 ± 3 

years) suggest that those without bone lead measurements are less healthy, although the differences are 
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slight (Table 1).  Notably, though, NAS men who provided bone lead measurements were more likely 

to be never smokers suggesting generally better health habits overall.  

Results of our base model, restricted to white men and adjusting for education and smoking suggested 

that there is a slight, but non-significant increase in the hazard ratio (HR) for all cause, all 

cardiovascular, and ischemic heart disease mortality with increasing patella lead concentration tertile 

(Table 2, Model 1). The effect estimates were materially unchanged with additional adjustment (Table 

2, Model 2), suggesting that our base adjustment variables reasonably controlled for SES or that bias 

from SES was minimal, although it cannot prove that we have not omitted some critical unmeasured 

(“U”) variable.  

Restriction 

In analyses restricted to NAS participants who were 45 years old or younger at entry into the NAS 

(n=637), the magnitude of the association between the top tertile of patella lead concentration and 

mortality increased substantially, and the trends for all mortality categories were significant (Table 2, 

Model 3).   

IPW 

Finally, using IPW to weight the maximally adjusted analysis among those 45 or younger at NAS 

recruitment, further strengthened effect estimates (Table 2, Model 4); analyses using weights truncated 

at the 1st and 99th percentiles were similar (Supplemental Table S4).  The results of the base model 

analyses and of the additionally adjusted, restricted, and weighted analyses when treating patella lead 

concentration continuously and using splines is shown in Supplemental Figures S1 and S2.  

Analyses that considered blood lead or tibia lead concentration found no associations with mortality 

under any of the models.  See Supplemental material and Supplemental Tables S5 and S6. 
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Discussion 

According to the assumptions about the causal structure detailed in our DAG, we applied methods to 

mitigate bias of the total exposure-health effect association through adjustment for age and SES-related 

variables, restriction to those 45 or younger at NAS entry, and use of IPW to account for non-

participation after study entry.  After applying these methods, we found that our patella lead-mortality 

effect estimates were substantially increased and consistently statistically significant; the effect 

estimate comparing those in the lowest tertile to the highest tertile of patella bone lead concentration 

increased 39% (HR=1.34 to HR=1.86) for allcause mortality, 69% (HR=1.46 to HR=2.47) for all 

cardiovascular mortality, and 159% (HR=2.01 to HR=5.20) for ischemic heart disease mortality (Table 

2).  

Bias of the exposure-health effect association introduced by selection—both at cohort formation and 

later selection into subgroups within the formed cohort—can arise when these forms of selection are 

related to the outcome and the exposure under study.  In the case of collider stratification bias related 

to selection into a study or sub-study, this requires the exposure and outcome (or causes of the 

exposure or outcome, potentially including past exposure or outcome status) to determine selection 

(Greenland 2003).   For many health studies it is likely that the outcome or its causes influence study 

enrollment and continued participation because health is an important predictor of participation, even 

absent cohort entry criteria that can produce the same phenomenon (Alonso et al. 2009; Mein et al. 

2012).  For environmental health studies in particular, exposures are often expected to be related to 

participation because such exposures are determined, in part, by socioeconomic status, which 

influences participation (de Graaf et al. 2000; Howe et al. 2013; Mein et al. 2012; Weuve 2013) and 

because current or future exposure is often highly correlated with past exposures, which may influence 

participation through their downstream consequences.  Importantly, when selection is related to causes 
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of the outcome that are also on the causal path between exposure and outcome, bias of the causal effect 

of the exposure on the health effect may arise from conditioning on an intermediate even if exposure is 

not otherwise related to selection.  In our case, the selection process involved in creating the NAS led 

to conditioning on an intermediate, which produced a downward bias in the effect estimate for patella 

lead. Intuitively, if an intermediate factor between lead exposure and cardiovascular mortality is held 

fixed, then variation in lead exposure prior to that factor is irrelevant and can have no effect on the 

outcome through that intermediate factor because that factor cannot vary—everyone has the same level 

of it. Thus any effect of Pb0 on cardiovascular mortality is blocked.  

In our example, both of these sources of bias of exposure-health effect estimates can also be thought of 

as an issue of the depletion of susceptibles.  Intuitively, the problem is that, on average, those people 

with high lead exposure who participate in the NAS KXRF examination may be a select sample of 

people who are much less sensitive to cardiovascular or other effects of lead exposure. If they were not 

less sensitive, then those effects of lead exposure would have prevented them from entering the NAS 

or participating in the KXRF sub-study, either because they would be less inclined to participate due to 

poor health, or they would be excluded based on eligibility criteria for the NAS.  In practice, analysis 

can be done only among those who were recruited into the study.  Naïve analyses among this group 

must be interpreted as the association with lead exposure among those who entered the study, and we 

can argue that this is a group enriched with people who are not—or are less—sensitive to the 

cardiovascular effects of lead than what would be seen in the larger source population as a whole.  

Thus, even the association with lead exposure after entry into the study would be expected to be less 

than what one would get if the analysis was done on a population-representative group, although 

exactly how much less may be difficult to predict.  
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Given that for many environmental toxicants, exposures measured after study initiation are strongly 

correlated with exposures before study initiation, environmental studies may be highly susceptible to 

these biases, which would typically result in underestimation of the total adverse effects of the 

contaminants on the health outcome under study in the whole population from which one samples.  

When exposures after study initiation are not correlated with exposures before study initiation, the 

potential biases we describe are less likely.  In pharmacoepidemiology studies investigators often use 

this fact aim to avoid bias by considering only cohorts of "new users" of treatments. Studies of 

occupational exposures that enroll subjects when they start working can also avoid these problems as 

the workplace exposures are only after study initiation.  However, the ubiquitous nature of 

environmental exposures makes these issues highly problematic for environmental epidemiological 

studies.  Similarly, studies of social or nutritional exposures would also likely suffer from these issues 

as those exposures also tend to be longstanding.  

Although we believe that mitigation of effect estimate bias in our assumed causal structure accounts 

for our findings, alternate explanations are possible.  For example, the change in results after restriction 

of the sample to those 45 years old or younger at baseline, which we have labeled as due to mitigation 

of effect estimate bias, could also be explained by effect modification by age.  That is, our results are 

also compatible with lead exposure at younger ages having a different effect on the risk of 

cardiovascular mortality than lead exposure at older ages.  Specifically, if lead exposure at younger 

ages increases the risk of cardiovascular mortality, while lead exposure at older ages decreases—or at 

least doesn’t increase—the risk of cardiovascular mortality, we would expect a difference in results 

similar to that which we found when restricting the sample to those 45 years old or younger at NAS 

entry.  However, from a biological perspective, a reduced effect of lead exposure at older ages seems 
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unlikely; increasing age is often accompanied by increased vulnerability to stressors (Clegg et al. 

2013).   

The lack of association with tibia lead concentration in any analysis may imply that it is re-release of 

lead from bone at older ages that is most relevant for cardiovascular mortality than cumulative past 

exposure at earlier ages. Lead in patella is more mobilizable than lead in tibia and so better reflects 

lead that can be re-introduced into circulation in later life as a result of bone reformation or bone loss 

than does lead in tibia, which better reflects long-term past exposures because of the very long half-life 

of lead in tibia bone (Wilker et al. 2011).  The lack of association with blood lead concentration, 

though, suggests that the time window of relevance for these effects of lead re-released from bone is 

still a longer-term one since the half-life of lead in blood is on the order of a month, while that of lead 

in patella is on the order of years (Hu et al. 1998; Wilker et al. 2011).  A few prior papers using 

National Health And Nutrition Examination Study (NHANES) data, however, did see associations 

between a single blood lead concentration measurement and mortality (Jemal et al. 2002; Lustberg and 

Silbergeld 2002; Menke et al. 2006; Schober et al. 2006). The different findings could relate to 

differences in ages of the study population, differences by race or sex, or—if the associations with 

blood lead were the result of correlation with bone lead—possibly because of more variability in lead 

exposure in the Boston, Massachusetts area resulting in worse correlation with bone lead in our group 

than in NHANES. 

This work has some limitations.   While we think our methods have mitigated bias of the exposure-

health effect association, we acknowledge that they are unlikely to have completely eliminated it.  For 

example, SES is a complex factor and our adjustments may not have fully accounted for the aspects of 

SES that drive study participation.  Similarly, restriction to those less than 45 is unlikely to have 

completely eliminated bias of the exposure-health effect association, given that cardiovascular 
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outcomes, while less common, still occur in that group.  Finally, our IPW, as implemented, do not 

include lead measurements on non-participants and therefore assume that all effects of lead exposure 

on participation occur through measureable health effects or other conditions available in our data.  

Unmeasured confounding or incomplete control for confounding may remain a source of bias. As our 

outcome was mortality, we ignored selection due to death and estimated our effect among the survivors 

at the time of the KXRF.  While IPW and other methods can be used to address selection due to death, 

the utility of such efforts is controversial (Chaix et al. 2012; Tchtetgen Tchetgen et al. 2012; Weuve et 

al. 2012) and we refer the reader elsewhere (Andersen and Keiding 2012; Chaix et al. 2012; Kurland et 

al. 2009; Lau et al. 2009; Tchetgen Tchetgen 2014; Tchtetgen Tchetgen et al. 2012; Varadhan et al. 

2014; Weuve et al. 2012). 

The problem of collider stratification bias in the setting of cohort studies is beginning to receive more 

attention.  Several studies have shown that the magnitude of bias from loss-to-follow-up is potentially 

substantial, especially when SES is the exposure of interest (Howe et al. 2013; Weuve et al. 2012; 

Weuve 2013).  Given the strong correlation between many environmental toxicants and SES, we 

would expect potentially large bias due to loss-to-follow-up to be possible and even expected as the 

combination of SES and factors related to many outcomes are likely to be a particularly strong 

predictor of participation, but are often difficult to measure.  Similarly, bias from selective enrollment 

has been proposed as one potential explanation for a common pattern of association in studies of 

dementia risk, where associations with a risk factor (e.g. smoking, hypertension) suggest harm when 

participants are recruited and the risk factor is measured in mid-life but protection when participants 

are recruited and the risk factor is measured in late life (Hernan et al. 2008; Power et al. 2011; Power et 

al. 2013).  The basis for this explanation posits that the most susceptible persons, those for whom the 

risk factor is most likely to result in dementia, are the most likely to be lost to follow-up, as both 
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declining cognition and many of the risk factors of interest are known to influence attrition; as risk-

factor related health effects and declining cognition are more likely manifest with advanced age, the 

problem worsens with older age of recruitment.  It should be noted, however, that these issues are not 

unique to health issues of older age.  Birth cohorts, for example, can be affected in a similar manner by 

the fact that participants are (usually) selected on being live births.  This can bias exposure-outcome 

effect estimates downward if the exposure under study is associated with reduced likelihood of 

conception or increased fetal loss (Hernan et al. 2014). Our work suggests that selective enrollment in 

studies or sub-studies of environmental toxicants has the possibility to substantially bias results. 

Conclusions 

Careful attention to the causal structure of one’s research study is critical to identifying potential biases 

and ways to mitigate them.  Careful attention to factors that influence participation and loss to follow-

up is critical, and may be especially important for studies of environmental risk factors.  Recruitment 

of population-based samples and recruitment at earlier ages for all studies, including those of aging-

related outcomes can help reduce these potential pitfalls by providing data necessary to address these 

issues analytically. 
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Table 1. Characteristics at the time of first VA visit after 1980 (mean 1983 ± 3 years) by age at NAS 

entry and participation in bone lead measurements among those who were alive at the time the bone 

lead analyses were started. 

 <45 years of age at NAS 
entry n=1004 

45 or more years of age at 
NAS entry n=350 

Characteristic 

Bone lead 
measured 

n=637 

Bone lead not 
measured 

n=367 

Bone lead 
measured 

n=198 

Bone lead not 
measured 

n=152 
Smoking status, n (%)     
  Never 167 (26.2) 74 (20.2) 78 (39.4) 43 (28.3) 
  Former 332 (52.1) 194 (52.9) 105 (53.0) 92 (60.5) 
  Current 137 (21.5) 99 (27.0) 14 (7.1) 16 (10.5) 
  Missing 1 (0.2) 0 (0) 1 (0.5) 1 (0.6) 
Education, n (%)     
  <High school 72 (11.3) 41 (11.2) 11 (5.6) 18 (11.8) 
  High school 217 (34.1) 130 (35.4) 67 (33.8) 57 (37.5) 
  Technical school 60 (9.4) 47 (12.8) 29 (14.7) 22 (14.5) 
  Some college 92 (14.4) 45 (12.3) 21 (10.6) 17 (11.2) 
  College graduate or more 172 (27.0) 88 (24.0) 63 (31.8) 28 (18.5) 
  Missing 24 (3.8) 16 (4.4) 7 (3.5) 10 (6.6) 
History of heart disease, n (%) 37 (5.8) 26 (7.1) 15 (7.6) 12 (7.9) 
History of hypertensiona, n (%) 237 (37.2) 138 (37.6) 94 (47.5) 77 (50.7) 
History of diuretic medications, n (%) 73 (11.5) 39 (10.6) 28 (14.1) 31 (20.4) 
History of cardiovascular medications, n (%) 117 (18.4) 77 (21.0) 51 (25.8) 42 (27.6) 
     
Age at visit, mean ± sd 53.3 ± 5.5 53.9 ± 6.4 64.4 ± 4.6 64.7 ± 4.2 
Diastolic blood pressure, mean ± sd 77.6 ± 8.7 79.0 ± 9.4 75.4 ± 8.2 75.8 ± 8.3 
Systolic blood pressure, mean ± sd 123.8 ± 14.7 125.7 ± 16.0 127.5 ± 16.4 129.3 ± 13.9 
Total cholesterol, mean ± sd 241.1 ± 40.9 247.5 ± 45.5 242.6 ± 41.9 237.1 ± 41.9 
Uric acid, mean ± sd 6.7 ± 1.3 6.6 ± 1.2 6.3 ± 1.1 6.5 ± 1.4 
a Diagnosis, medications, or based on blood pressure. 

  



Environ Health Perspect doi: 10.1289/ehp.1408888 
Advance Publication: Not Copyedited 
 
 

 32 

Table 2. Adjusted hazard ratios (HR; 95% CI) for all-cause, cardiovascular disease, and ischemic heart 

disease mortality, by tertileb of patella lead at baseline among either all white men in the Normative 

Aging Study (N=835), or those 45 years old or younger at NAS study entry (N=637). 

  Tertile of patella Pb  

Model 
Deaths 

1st 

<20µg/g 
2nd 

20-31µg/g 
3rd 

>31µg/g 
p-

trend 
MODEL 1: Base Modela (N=835) 
   All Cause Mortality 235 Ref 1.23 (0.82-1.85) 1.34 (0.90-2.00) 0.16 
   All Cardiovascular Mortality 134 Ref 1.22 (0.71-2.10) 1.46 (0.86-2.48) 0.15 
   Ischemic Heart Disease Mortality 61 Ref 1.73 (0.74-4.07) 2.01 (0.86-4.68) 0.12 
MODEL 2: Additional SES Adjustmentc (N=835) 

All Cause Mortality 235 Ref 1.16 (0.76-1.79) 1.25 (0.83-1.90) 0.30 
All Cardiovascular Mortality 134 Ref 1.16 (0.65-2.08) 1.45 (0.83-2.53) 0.16 
Ischemic Heart Disease Mortality 61 Ref 1.96 (0.79-4.88) 2.11 (0.87-5.13) 0.13 

MODEL 3: Additional SES Adjustmentc and Restriction To 45 years old or younger at NAS Inception 

(N=637) 
All Cause Mortality 135 Ref 1.30 (0.75-2.26) 1.72 (0.98-3.03) 0.05 
All Cardiovascular Mortality 75 Ref 1.36 (0.63-2.90) 2.23 (1.02-4.84) 0.03 
Ischemic Heart Disease Mortality 35 Ref 2.74 (0.78-9.63) 4.60 (1.26-16.8) 0.02 

MODEL 4: Additional SES Adjustmentc, Restriction To 45 years old or younger at NAS Inception, and 
IPW (N=637) 

All Cause Mortality 135 Ref 1.41 (0.86-2.30) 1.86 (1.12-3.09) 0.02 
All Cardiovascular Mortality 75 Ref 1.53 (0.78-2.99) 2.47 (1.23-4.96) 0.009 
Ischemic Heart Disease Mortality 35 Ref 3.09 (1.01-9.46) 5.20 (1.61-16.8) 0.005 

a Model 1: Adjusted for age at KXRF, age at KXRF squared, smoking (never/former/current & packyears), and 

education.  
b Tertiles of patella lead are based on the distribution among NAS participants 45 years old or younger at NAS 

entry. 
c Additionally adjusted for occupation and salary at NAS entry, mother’s education and occupation, father’s 

education and occupation. 
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Figure Legends 

Figure 1. A) Introduction to causal DAGs: A, B, C, D, E, F, G represent variables, or nodes, while 

directional arrows indicate causal relationships between these variables.  A variable with two arrows 

pointing into it (a common effect of the two variables; e.g. D) is referred to as a collider. B) 

Conditioning on a variable (either by restriction, stratification, or adjustment in a model) is indicated 

by drawing a box around the variable, as shown for variables C and D. See text for details on how 

DAGs indicate causal and non-causal associations between variables.  

Figure 2. Directed acyclic graph (DAG) representation of our assumptions about the structure of the 

data in the study, where we are interested in estimating the causal effects of cumulative lead exposure 

on mortality.  See text for details.   U: unmeasured variables; L: Measured variables; Pb: lead 

exposure/bone lead concentration; CV: cardiovascular symptoms; SNAS: selection into the NAS cohort; 

SKXRF: selection into the KXRF sub-study.  Subscripts 0 and 1 refer to the time of NAS recruitment 

and KXRF measurement, respectively.  Note, the U and L variables are separate variables, but the 

structure of arrows into and out of them are the same, and so for simplicity they are shown together. 

Figure 3. Illustration of selection bias (a.k.a. collider stratification bias) at A) the time of entry into the 

NAS and B) due to loss-to-follow-up prior to KXRF lead measurements. See text for details.  Variable 

definitions as in Figure 2 

Figure 4. Illustration of bias due to conditioning on an intermediate at A) the time of entry into the 

NAS and B) due to loss-to-follow-up prior to KXRF lead measurements. See text for details.  Variable 

definitions as in Figure 2 

Figure 5.  Demonstration of impact of efforts to alleviate bias due to collider stratification bias and 

conditioning on an intermediate (CV). A) Directed acyclic graph (DAG) reflecting structure of our 

data in the base analysis among white men adjusting for age, education, and smoking (Model 1). B) 

DAG reflecting data structure after additional regression adjustment (Model 2) under the assumption 

that we no longer have important uncontrolled variables (U), although we recognize that we cannot 

rule out such variables entirely. C) DAG reflecting data structure after additionally restricting to those 

<45 years of age at NAS entry. D) DAG reflecting data structure after additionally using IPW to 
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account for loss-to-follow-up between cohort inception and KXRF among those <45 years of age at 

baseline. See text for additional details. Variable definitions as in Figure 2. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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